
This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

A Guide to the agop 0.2-0 Package for R
Aggregation Operators and Preordered Sets in R

Marek Gagolewski1,2
1 Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland
2 Rexamine, Email: gagolews@rexamine.com

http://agop.rexamine.com

November 19, 2014

Any suggestions and comments are welcome!

Contents

1 Getting Started 2

2 Theoretical Background 3
2.1 A Note on Representing Numeric Data and Applying Operations in R 3
2.2 A Note on Storing Multiple Numeric Vectors in R 4
2.3 Aggregation Operators and Their Basic Properties 5
2.4 Impact Functions and The Producers Assessment Problem 7
2.5 Fuzzy Logic Connectives . 8
2.6 Copulas . 9
2.7 Spread Measures . 10

3 Visualization 10
3.1 Depicting Producers . 10

4 Binary Relations 11
4.1 Weak Dominance Relation (for PAP) . 12
4.2 Weak Dominance Relation (for vectors of fixed arity) 13
4.3 Comonotonicity . 13
4.4 Vector Spread . 14
4.5 Operations on Preorders and Other Binary Relations 14

5 Predefined Classes of Aggregation Operators in agop 17
5.1 A Review of Notable Classes of Aggregation Operators 17
5.2 Interesting Impact Functions . 20
5.3 Noteworthy Fuzzy Logic Connectives . 22
5.4 A Note on Copulas . 24
5.5 Interesting Spread Measures . 26

6 Aggregation Operators from the Probabilistic Perspective 26
6.1 Some Notable Probability Distributions . 26

6.1.1 Pareto-Type II Distribution . 26
6.1.2 Discretized Pareto-Type II Distribution 29

6.2 Stochastic Properties of Aggregation Operators 29

1

https://github.com/Rexamine/agop
http://agop.rexamine.com/

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Bibliography 29

Index 33

1 Getting Started

“The process of combining several numerical values into a single representative one
is called aggregation, and the numerical function performing this process is called
aggregation function. This simple definition demonstrates the size of the field of
application of aggregation: applied mathematics (e.g. probability, statistics, decision
theory), computer science (e.g. artificial intelligence, operation research), as well as
many applied fields (economics and finance, pattern recognition and image process-
ing, data fusion, multicriteria decision making, automated reasoning etc.). Although
history of aggregation is probably as old as mathematics (think of the arithmetic
mean), its existence has reminded underground till only recent (. . .).” [30, p. xiii]

R [44] is a free, open source software environment for statistical computing and graphics,
which includes an implementation of a very powerful and quite popular high-level language
called S. It runs on all major operating systems, i.e. Windows, Linux, and MacOS X. To install R
and/or find some information on the S language please visit R Project’s Homepage at www.R-
project.org. Perhaps you may also wish to install RStudio, a convenient development environment
for R. It is available at www.rsudio.org.

agop is an open source (licensed under GNU LGPL 3) package for R ≥ 2.12 to which anyone
can contribute. It started as a fork of the CITAN (Citation Analysis Toolpack, [19]) package.

To install latest “official” release of the package available on CRAN we type1:

install.packages('agop')

Alternatively, we may fetch its current development snapshot from GitHub:

install.packages('devtools')
devtools::install_github('agop', 'Rexamine')

Note that in this case you will need a working C/C++ compiler2.

Each session with agop should be preceded by a call to:

library('agop') # Load the package

To view the main page of the manual we type:

library(help='agop')

For more information please visit the package’s homepage [24]. In case of any problems, com-
ments, or suggestions feel free to contact the authors. Good luck!

1You are viewing the development version of the tutorial. Some of the features presented in this document
may be missing in the CRAN release. Please, upgrade to the latest development version from GitHub if you need
the new functionality. Note that you will need a working C/C++ compiler.

2Windows users should have Rtools installed, see cran.r-project.org/bin/windows/Rtools/.

2

https://github.com/Rexamine/agop
http://www.R-project.org
http://www.R-project.org
http://rstudio.org/
https://github.com/Rexamine/agop
https://github.com/Rexamine/agop
http://cran.r-project.org/bin/windows/Rtools/

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

2 Theoretical Background

Let us establish some basic notation convention used throughout this tutorial. From now on let
I = [a, b], possibly with a = −∞ or b =∞. Note that in many practical situations we commonly
choose I = [−1, 1], I = [0, 1] or I = [0,∞]. A set of all vectors of arbitrary length with elements
in I is denoted by I1,2,... = ⋃∞

n=1 In .
For two equal-length vectors x,y ∈ In we write x ≤n y if and only if for all i = 1, . . . , n it

holds xi ≤ yi. Moreover, all binary arithmetic operations on vectors x,y ∈ In will be performed
element-wise, e.g. x + y = (x1 + y1, . . . , xn + yn) ∈ In. Similar behavior is assumed for −, ·, /,
∧ (min), ∨ (max), etc. Additionally, each function of one variable f : I→ I can be extended to
the vector space: we write f(x) to denote (f(x1), . . . , f(xn)).

Let x(i) denote the ith order statistic, i.e. the ith smallest value in x. Moreover, for conve-
nience, let x{i} = x|x|−i+1 denote the ith greatest value in x.

For any n ∈ N and c ∈ I, we set (n ∗ c) = (c, . . . , c) ∈ In. Also, [n] := {1, 2, . . . , n} with
[0] = ∅.

Let S[n] denote the set of all permutations of [n], and for any σ ∈ S[n], Inσ = {(x1, . . . , xn) ∈
In : xσ(1) ≤ · · · ≤ xσ(n)}. Furthermore, if F : In → I, then let F|σ denote the restriction of F to
Inσ, i.e. F|σ : Inσ → I, F|σ(x) = F(x) for any x ∈ Inσ.

2.1 A Note on Representing Numeric Data and Applying Operations in R

Recall how we create numeric vectors in R:

(x1 <- c(5, 2, 3, 1, 0, 0))

[1] 5 2 3 1 0 0

class(x1)

[1] "numeric"

(x2 <- 10:1) # the same as seq(10, 1)

[1] 10 9 8 7 6 5 4 3 2 1

(x3 <- seq(1, 5, length.out=6))

[1] 1.0 1.8 2.6 3.4 4.2 5.0

(x4 <- seq(1, 5, by=1.25))

[1] 1.00 2.25 3.50 4.75

To obtain (n ∗ c), e.g. for n = 10 and c = 3, we call:

rep(10, 3)

[1] 10 10 10

Note that in R all the arithmetic operations on vectors are performed element-wise, i.e. in
a manner indicated above. This is called vectorization. The same holds for mathematical
functions: they are extended to the vector space.

x <- c(1, 3, 3, 2)
y <- c(2, 3, -1, 0)
x+y

[1] 3 6 2 2

3

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

x*y

[1] 2 9 -3 0

pmin(x,y) # parallel minimum

[1] 1 3 -1 0

pmax(x,y) # parallel maximum

[1] 2 3 3 2

abs(y)

[1] 2 3 1 0

Thus, we calculated x + y, x · y, x ∧ y, x ∨ y, and |x| (try to determine yourself what happens
if we deal with two vectors of unequal length in R).

Moreover, given two equal-length vectors, for the ≤n relation we write:

all(x <= y)

[1] FALSE

To get x{i} we have to sort the given vector nonincreasingly:

(xg <- sort(x, decreasing=TRUE)) # `decresing' may be misleading

[1] 3 3 2 1

xg[3] # the third greatest value in x

[1] 2

and for x(i) we type:

(xs <- sort(x)) # sorted nondecreasingly

[1] 1 2 3 3

xs[3] # the third smallest value in x

[1] 3

2.2 A Note on Storing Multiple Numeric Vectors in R

Vectors of the same length can be conveniently stored in a matrices. Keep in mind that elements
are stored in a columnwise order, so for performance reasons please do store each vector in a
separate matrix’s column (not: row). Please note that the dimnames attribute of a matrix may
define its row and column labels. Its value may be set to NULL (no names given) or to a list with
two character vectors (rows and columns names, respectively). Another simple way to set the
labels is by using the rownames() and colnames() functions.

The apply() function may be called to evaluate a given method on each matrix row or
column (parameter MARGIN set to 1 and 2, respectively).

expertopinions <- matrix(c(
6,7,2,3,1, # this will be the first COLUMN
8,3,2,1,9, # 2nd
4,2,4,1,6 # 3rd

),
ncol=3,

4

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

dimnames=list(NULL, c("A", "B", "C")) # only column names set
)
class(expertopinions)

[1] "matrix"

print(expertopinions) # or print(authors)

A B C
[1,] 6 8 4
[2,] 7 3 2
[3,] 2 2 4
[4,] 3 1 1
[5,] 1 9 6

apply(expertopinions, 2, mean) # apply the mean() function on each COLUMN

A B C
3.8 4.6 3.4

Vectors that are not of the same length may be store in a list (with possibly named elements).
In that case, the functionality of apply() is provided by lapply() or sapply() functions.

authors <- list(
"John S." = c(7,6,2,1,0),
"Kate F." = c(9,8,7,6,4,1,1,0)

)
class(authors)

[1] "list"

str(authors) # or print(authors)

List of 2
$ John S.: num [1:5] 7 6 2 1 0
$ Kate F.: num [1:8] 9 8 7 6 4 1 1 0

index_h(authors[[1]]) # the h-index /see below/ for 1st author

[1] 2

sapply(authors, index_h) # calculate the h-index for all vectors in a list

John S. Kate F.
2 4

2.3 Aggregation Operators and Their Basic Properties

Dealing with huge amounts of data faces us with the problem of constructing their synthetic
descriptions. The aggregation theory, a relatively new research domain at the border of mathe-
matics and computer science, is interested in the analysis of functions that may be used in this
task. Thus, we should start with the formal definition of objects of our interest. Here is the
most general setting:
Definition 1. A function F : I1,2,... → I is called an (extended3) aggregation operator
if it is at least nondecreasing in each variable, i.e. for all n and x,y ∈ In if x ≤n y, then
F(x) ≤ F(y).

3Extended to the space of vectors of arbitrary length, cf. e.g. [6, 30]; Classical approach considers only fixed-
length vectors. In agop we are as much general as possible.

5

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Note that each aggregation operator is a mapping into I, thus for all n we have infx∈In F(x) ≥
a and supx∈In F(x) ≤ b. By nondecreasingness, however, these conditions reduce to F(n ∗ a) ≥ a
and F(n ∗ b) ≤ b.

Also keep in mind that some authors assume (cf. [30]) that aggregation operators must
fulfill the two following strong boundary conditions: for all n we have infx∈In F(x) = a and
supx∈In F(x) = b. Such aggregation operators are sometimes called averaging functions. In
our case, this does not necessarily hold – we want to be more general.

Here are some interesting properties of averaging functions. Later on we will characterize
some of the classes of functions that fulfill them.
Definition 2. We call F : I1,2,... → I symmetric if:

(∀n ∈ N) (∀x,y ∈ In) x ∼= y =⇒ F(x) = F(y),

where x ∼= y if and only if there exists a permutation σ of [n] such that x = (yσ(1), . . . , yσ(n)).
It may be shown, see [30, Thm. 2.34], that F : In → I is symmetric if and only if there exists

a function G′ : I1,2,... → I such that F(x1, . . . , xn) = G′(x(1), . . . , x(n)), or, equivalently, a function
G′′ : I1,2,... → I, for which we have F(x1, . . . , xn) = G′′(x{1}, . . . , x{n}). In other words, F may be
defined solely using order statistics: its value is independent of the aggregated vector’s elements
presentation.

By the way:

x <- c(0.5, 0.4, 0.1, 0.3, 0.2) # an exemplary vector
sigma1 <- c(1, 3, 5, 2, 4) # an exemplary permutation
x[sigma1]

[1] 0.5 0.1 0.2 0.4 0.3

(sigma2 <- order(x)) # ordering permutation of x

[1] 3 5 4 2 1

x[sigma2]

[1] 0.1 0.2 0.3 0.4 0.5

Idempotence is well-known from algebra, where we say that element x is idempotent with
respect to binary operator ∗ if we have x ∗x = x. The following definition extends this property
to n-ary aggregation functions, cf. [30].
Definition 3. We call F : I1,2,... → I idempotent if:

(∀n ∈ N) (∀x ∈ I) F(n ∗ x) = x.

Idempotent aggregation operators fulfilling the strong boundary conditions (see p. 6) are
sometimes called averaging functions, cf. [30].

An example of such object is the arithmetic mean or median.

Definition 4. We call F : I1,2,... → I additive if:

F(x + y) = F(x) + F(y),

for all n ∈ N,x,y ∈ In such that x + y ∈ In.
Please note that for a ≤ 0, if F is additive, then necessarily it holds F(0) = 0.

6

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Definition 5. We call F minitive if:

(∀n ∈ N) (∀x,y ∈ In) F(x ∧ y) = F(x) ∧ F(y).

Definition 6. We call F maxitive if:

(∀n ∈ N) (∀x,y ∈ In) F(x ∨ y) = F(x) ∨ F(y).

Definition 7. We call F modular (cf. [5, 30, 36]) if:

(∀n ∈ N) (∀x,y ∈ In) F(x ∨ y) + F(x ∧ y) = F(x) + F(y)

It may easily be seen that each additive operator is also modular (i.e. modularity is more
general than additivity), because for any additive aggregation operator F, since (x∨y)+(x∧y) =
x + y, we have F(x) + F(y) = F(x + y) = F((x ∨ y) + (x ∧ y)) = F(x ∨ y) + F(x ∧ y).

Apart from the “ordinary” minitivity, maxitivity, and modularity we may introduce their
symmetrized versions, using x

S
+ y = (x(1) + y(1), . . . , x(n) + y(n)), x

S
∨ y = (x(1) ∨ y(1), . . . , x(n) ∨

y(n)) and x
S
∧ y = (x(1) ∧ y(1), . . . , x(n) ∧ y(n)).

2.4 Impact Functions and The Producers Assessment Problem

We already noticed the important class of aggregation operators: the averaging functions. They
may be used to represent the most “typical” value of a numeric vector. Here is another interesting
class that represents solutions to some very interesting practical issue.

The Producers Assessment Problem (PAP, [28]) concerns evaluation of a set of produc-
ers (e.g. scientists, artists, writers, craftsman) according to some quality or popularity ratings
of products (e.g. scientific articles, works, books, artifacts) that were outputted by an entity.

Tab. 1. The Producer Assessment Problem – typical instances

Producer Products Rating method Discipline
A Scientist Scientific articles Number of citations Scientometrics
B Scientific institute Scientists The h-index Scientometrics
C Web server Web pages Number of in-links Webometrics
D Artist Paintings Auction price Auctions
E Billboard company Advertisements Sale results Marketing
F R package author Packages PageRank values

w.r.t. the dependency
graph

Software Engineering

PAP instances may be found in many real-life situations, like those encountered for example
in scientometrics, webometrics, marketing, manufacturing, or quality engineering, see Table 1
and e.g. [16]. Our main interest here is focused on constructing and analyzing aggregation
operators which may be used in the producers’ rating task. Such functions should take into
account the two following aspects of a producer’s quality:

• his/her ability to output highly-rated products,

• his/her overall productivity.

7

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

For the sake of illustration, we will consider PAP in the scientometric context, where scientists
“produce” papers that are cited by peers.

Let I = [0,∞] represent the set of values that some a priori chosen paper quality measure may
take. These may of course be non-integers, for example when we consider citations normalized
with respect to the number of papers’ authors.

It is widely accepted, see e.g. [49, 48, 50, 41, 39, 40, 28, 18, 17], that each aggregation operator
F : I1,2,... → I to be applied in PAP should at least be:

(a) nondecreasing in each variable (additional citations received by a paper or an improvement
of its quality measure does not result in a decrease of the authors’ overall evaluation),

(b) arity-monotonic (by publishing a new paper we never decrease the overall valuation of the
entity),

(c) symmetric (independent of the order of elements’ presentation, i.e. we may always assume
that we aggregate vectors that are already sorted).

More formally, axiom (b) is fulfilled iff for any x ∈ I1,2,... and y ∈ I it holds F(x) ≤
F(x1, . . . , xn, y). It may be seen that this property is arity-dependent, i.e. it takes into account
the number of elements to be aggregated.

Moreover, (a) and (c) were defined in the previous section.

Here is a bunch of arity-dependent properties that can be useful while aggregating vectors
of varying lengths, cf. also [9].
Definition 8. We call F ∈ E(I) a zero-insensitive aggregation operator if for each x ∈ I1,2,...

it holds F(x, 0) = F(x).
It may be seen that, under nondecreasingness, zero-insensitivity implies arity-monotonicity,

see [26]. What is interesting, each zero-insensitive impact function F may be defined by means
of G : I∞ → I such that F(x) = G(x, 0, 0, . . .), i.e. of function which domain is the space of
vectors of infinite length.

Zero-sensitivity may be strengthened as follows, cf. [26] and [49, Axiom A1].
Definition 9. F ∈ E(I) is F -insensitive if

(∀x ∈ I1,2,...) (∀y ∈ I) y ≤ F(x) =⇒ F(x, y) = F(x).

Note that the above property was called R-stability in [4].
Definition 10. F ∈ E(I) is F+sensitive if

(∀x ∈ I1,2,...) (∀y ∈ I) y > F(x) =⇒ F(x, y) > F(x).

2.5 Fuzzy Logic Connectives

Another set of tools in which the theory of aggregation is interested consist of fuzzy logic
connectives, cf. e.g. [33, 3]. Most of them are binary operations and assume that I = [0, 1].
Definition 11. A function T : [0, 1]× [0, 1]→ [0, 1] is a t-norm if for all x, y, z ∈ [0, 1] it holds:

1. T (x, y) = T (y, x) (symmetry/commutativity),

2. if y ≤ z, then T (x, y) ≤ T (x, z) (nondecreasingness),

3. T (x, T (y, z)) = T (T (x, y), z) (associativity),

8

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

4. T (x, 1) = x (neutral element).

Thus, a t-norm is a special kind of symmetric averaging function on [0, 1]2. Moreover, each
t-norm has 0 as its annihilator element, i.e. T (x, 0) = T (0, x) = 0 for all x. It is easily seen
that the restriction of any t-norm to {0, 1} gives us the conjunction operation known from the
classical logic.

Definition 12. A function S : [0, 1] × [0, 1] → [0, 1] is a t-conorm if for all x, y, z ∈ [0, 1] it
holds:

1. S(x, y) = S(y, x) (symmetry/commutativity),

2. if y ≤ z, then S(x, y) ≤ S(x, z) (nondecreasingness),

3. S(x, S(y, z)) = S(S(x, y), z) (associativity),

4. S(x, 0) = x (neutral element).

It is easily seen that the restriction of any t-conorm to {0, 1} gives us the classical logical
alternative.

Definition 13. A function N : [0, 1]→ [0, 1] is a fuzzy negation if for all x, y ∈ [0, 1] it holds:

1. if x ≤ y, then N(x) ≥ N(y) (nonincreasingness),

2. N(0) = 1,

3. N(1) = 0.

Definition 14. A function I : [0, 1]× [0, 1]→ [0, 1] is a fuzzy implication if for all x, y, x′, y′ ∈
[0, 1] it holds:

1. if x ≤ x′, then I(x, y) ≥ I(x′, y) (nonincreasingness w.r.t. x),

2. if y ≤ y′, then I(x, y) ≤ I(x, y′) (nondecreasingness w.r.t. y),

3. I(1, 1) = 1,

4. I(0, 0) = 1,

5. I(1, 0) = 0.

It is easily seen that I(x, 1) = 1 and I(0, y) = 1 for all x, y.
Note that fuzzy negations and implications are not averaging functions in the above-

mentioned sense. It is because they do not fulfill the nondecreasingness condition.

2.6 Copulas

Copulas form another group of interesting and useful aggregation operators. They may be used
in probability and statistics to model the kind of dependency between random variables, see
e.g. [38].

For given n, each n-copula C : [0, 1]n → [0, 1] is a cumulative distribution function of a
n-dimensional random variable having uniform margins. In particular, for n = 2 we have what
follows.

9

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Definition 15. A function C : [0, 1]× [0, 1]→ [0, 1] is a 2-copula if for all x, y, x′, y′ ∈ [0, 1] it
holds:

1. if x ≤ x′ and y ≤ y′, then C(x, y) + C(x′, y′)− C(x, y′)− C(x′, y) ≥ 0 (2-increasingness),

2. C(x, 0) = C(0, x) = x (annihilator element),

3. C(x, 1) = x (neutral element).

Note that each t-norm fulfills (2) and (3). Moreover, each copula is nondecreasing. However,
there are 2-copulas that are not t-norms and conversely, see e.g. [32].

2.7 Spread Measures

Classically, aggregation theory focuses on the broadly-conceived averaging functions and fuzzy
logic connectives. However, one often needs a very different kind of a proper synthesis of multi-
dimensional numeric data into a single number. In [23] an axiomatization of spread measures,
which may be used to measure (absolute) data variability, spread, or scatter, was proposed.

Given x,x′ ∈ In, we write x 4n x′ and say that x has not greater absolute spread than
x′, if and only if for all i, j ∈ [n] it holds:

(xi − xj)(x′i − x′j) ≥ 0 and |xi − xj | ≤ |x′i − x′j |. (1)

Please note that 4n is a preorder on In, i.e. a relation that is reflexive and transitive. What
is more, it is not necessarily total, i.e. not all vectors are comparable with each other, see also
Sec. 4.4.

Additionally, whether 4n holds for given x,x′ depends on how the elements in both vectors
are jointly ordered. The left side of (1) implies that if x 4n x′, then x,x′ are comonotonic
(cf. [30, Def. 2.123] and Sec. 4.3). Thus, trivially, if x 4n x′, then there exists σ ∈ S[n] such
that x,x′ ∈ Inσ. In fact, in this setting it might be shown that σ is an ordering permutation of
x′.

Definition 16. A spread measure is a mapping V : In → [0,∞] such that:

(v1) for each x 4n x′ it holds V(x) ≤ V(x′),

(v2) for any c ∈ I it holds V(n ∗ c) = 0.

This class includes e.g. the sample variance, standard deviation, range, interquartile range,
median absolute deviation etc., that is functions widely used in exploratory data analysis (all
of them are symmetric). Additionally, measures of experts’ opinions diversity or consensus in
group decision making problems may be obtained.

3 Visualization

3.1 Depicting Producers

The plot_producer() function may be used to draw a graphical representation of a given
numeric vector, i.e. what is sometimes called a citation function in scientometrics.

As in the PAP we are interested in symmetric agops, a given vector x = (x1, . . . , xn) may
be represented by a step function defined for 0 ≤ y < n and given by:

10

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

π(y) = x{by+1c}.

This function may be obtained by setting type=’right.continuous’ argument in plot_pro-
ducer(). Recall that x{i} denotes i-th greatest value in x.

On the other hand, for type=’left.continuous’ (the default), we get

π(y) = x{byc}

for 0 < y ≤ n.
Note that this function depicts the curve that joins the sequence of points (0, x{1}), (1, x{1}),

(1, x{2}), (2, x{2}), . . . , (n, x{n}).

The plot_producer() function behaves much like the well-known R’s plot.default() and
allows for passing all its graphical parameters. For example, let us depict the state of two given
producers, x(1) and x(2).

x1 <- c(5, 4, 2, 2, 1)
x2 <- c(3, 3, 1, 0, 0, 0, 0)
plot_producer(x1, extend=TRUE, las=1)
plot_producer(x2, add=TRUE, col=2, pch=2, extend=TRUE)
legend('topright', c('x1', 'x2'), col=c(1, 2), lty=1, pch=c(1, 2))

0 1 2 3 4 5 6

0

1

2

3

4

5 x1
x2

4 Binary Relations

The agop package includes a few functions aiming to deal with binary relations4 defined on finite
sets consisting of distinctive elements V = {v1, . . . , vn}. Each binary relation R ⊆ V × V may
be represented by a square 0-15 matrix A = (ai,j)i,j=1,...,n such that ai,j = 1 if and only if viRvj .

Note that we write R ⊆ R′ if viRvj =⇒ viR
′vj , and that if R = V × V then for all i, j it

holds viRvj .
Table 2 gives an overview of the most often considered properties of binary relations. More-

over, Table 3 lists popular classes of relations.
4On CRAN there is also a package relations, see [37], that provides data structures and algorithms for k-

ary relations with arbitrary domains, featuring relational algebra, predicate functions, and fitters for consensus
relations. For some time, agop’s functionality will be a subset of relations’s (yet faster). In future versions,
however, we’d like to add fuzzy relations handling.

5Or, equivalently, logical; we have as.logical(0) == FALSE and as.logical(x) == TRUE if x 6= 0, and, on
the other hand, as.integer(FALSE) == 0 as.integer(TRUE) == 1.

11

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Tab. 2. Properties of binary relations.

Property Definition agop implementation
Reflexivity (∀i) viRvi rel_is_reflexive()
Irreflexivity (∀i) ¬viRvi rel_is_irreflexive()
Symmetry (∀i, j) viRvj ⇒ vjRvi rel_is_symmetric()
Antisymmetry (∀i, j) viRvj and vjRvi ⇒ i = j rel_is_antisymmetric()
Asymmetry (∀i, j) viRvj ⇒ ¬vjRvi rel_is_asymmetric()
Totality (∀i, j) viRvj or vjRvi rel_is_total()
Transitivity (∀i, j, k) viRvi and vjRvk ⇒ viRvk rel_is_transitive()
Cyclicity transitive closure of R is not antisymmetric rel_is_cyclic()

Tab. 3. Types of binary relations.

Class Properties
preorder (quasiorder) reflexive, transitive
total preorder (weak order, preference) total (⇒ reflexive), transitive
partial order reflexive, transitive, antisymmetric
linear order total (⇒ reflexive), transitive, antisymmetric
equivalence relation symmetric, reflexive, transitive

Reductions and closures To determine the reflexive closure, i.e. the minimal reflexive
R′ ⊇ R call rel_closure_reflexive(). On the other hand, with a call to rel_reduction_re-
flexive() we get the reflexive reduction of R, i.e. the minimal R′ ⊆ R such that the reflexive
closures of R′ and R are equal. In other words, R′ is the largest irreflexive relation contained
in R.

To find the transitive closure, cf. [47], of a given binary relation R, i.e. the minimal
transitive R′ ⊇ R, we call agop’s rel_closure_transitive() function. On the other hand, the
transitive reduction of acyclic R, see [1] and the rel_reduction_transitive() function, is
the minimal R′ ⊆ R such that the transitive closures of R and R′ are equal.

A mixture of the reflexive reduction and some kind of transitive reduction, particularly useful
when drawing Hasse diagrams of preoredered sets (which may not necessarily be represented by
an acyclic relation R) may be determined with rel_reduction_hasse().

In general, a total closure and a total reduction are not well-defined. However, when dealing
with preorders, the following notion may be useful, see [21]. To determine the so-called fair
total closure i.e. minimal total R′ ⊇ R such that if ¬xRy and ¬xRy then xR′y and yR′x, we
call rel_closure_total_fair().

The symmetric closure, the smallest symmetric binary relation that contains a given one,
is available via a call to rel_closure_symmetric().

4.1 Weak Dominance Relation (for PAP)

Let us consider the following relation on I1,2,.... For any x ∈ In and y ∈ Im we write x E y if
and only if n ≤ m and x{i} ≤ y{i} for all i = 1, . . . , n ∧m.

Of course, E is symmetric and transitive, i.e. it is a preorder. Moreover, it would have been
a partial order (in general it is not), if we had defined it on the set of sorted vectors.

Intuitively, we say that an author (scientometric context again) X is (weakly) dominated by
an author Y, if X has no more papers than Y and each the ith most cited paper of X has no

12

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

more citations than the ith most cited paper of Y . Note that the (m−n) least cited Y ’s papers
are not taken into account here.

Most importantly, however, there exist pairs of vectors that are incomparable with respect
to E (see the illustration below). In other words, this dominance relation is not total.

Whether this relationship between a pair of vectors holds may be determined using agop’s
pord_weakdom() function.

c(pord_weakdom(5:1, 10:1), pord_weakdom(10:1, 5:1)) # 5:1 <= 10:1

[1] TRUE FALSE

c(pord_weakdom(3:1, 5:4), pord_weakdom(5:4, 3:1)) # 3:1 ?? 5:4

[1] FALSE FALSE

The following result was shown in [28]. Let F ∈ E(I). Then F is symmetric, nondecreasing
in each variable and arity-monotonic if and only if for any x,y if x E y, then F(x) ≤ F(y).
Therefore, the class of impact functions may be equivalently defined as all the aggregation
operators that are nondecreasing with respect to this preorder.

Additionally, we will write x C y if x E y and x 6= y (strict dominance).

4.2 Weak Dominance Relation (for vectors of fixed arity)

Recall that for fixed n and any x ∈ In and y ∈ In we write x ≤n y if and only if xi ≤ yi for all
i = 1, . . . , n. It is easily seen that ≤n is a preorder and that each classical aggregation function
on In is a morphism between (In,≤n) and (I,≤).

This relation can of course be extended to I1,2,...: for x,y ∈ I1,2,... it holds x ≤1,2,... y whenever
|x| = |y| =: n and x ≤n y, see the pord_nd() function.

pord_nd(c(1,2,3,4), c(1,2,3,5))

[1] TRUE

pord_nd(c(1,2,3,4), c(5,3,1,2)) # elements' ordering matters

[1] FALSE

pord_nd(sort(c(1,2,3,4)), sort(c(5,3,1,2))) # symmetrized version

[1] TRUE

pord_nd(1:3, 1:2) # different lengths

[1] NA

pord_nd(1:3, 1:2, incompatible_lengths=FALSE)

[1] FALSE

4.3 Comonotonicity

According to [30, Def. 2.123], x,y ∈ In are comonotonic, denoted by x t y, if and only if there
exists a permutation σ ∈ S[n] such that

xσ(1) ≤ · · · ≤ xσ(n) and yσ(1) ≤ · · · ≤ yσ(n).

Thus, σ orders x and y simultaneously. Equivalently, x and y are comonotonic, iff (xi−xj)(yi−
yj) ≥ 0 for every i, j ∈ [n]. It is easily seen that the t binary relation is reflexive, symmetric,
and transitive. Thus, it is an equivalence relation.

13

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

To check if two given vectors are comonotonic, we can use the check_comonotonicity()
function.

check_comonotonicity(c(1, 5, 3, 2, 4), c(10, 100, 10, 10, 50))

[1] TRUE

check_comonotonicity(1:10, 10:1)

[1] FALSE

check_comonotonicity(1:3, 1:2) # different lengths

[1] NA

check_comonotonicity(1:3, 1:2, incompatible_lengths=FALSE)

[1] FALSE

4.4 Vector Spread

The pord_spread() function may be used to compare spread, scatter, or variability of two
numeric vectors. It may be shown, see [23], that for any x,x′ ∈ In it holds x 4n x′ if and only
if x,x′ are comonotonic and diff(sort(x)) ≤n−1 diff(sort(x′)), where diff(x1, x2, . . . , xn) =
(x2 − x1, x3 − x2, . . . , xn − xn−1).

pord_spread(c(1, 5, 2), c(1, 7, 3))

[1] TRUE

x <- rnorm(10)
pord_spread(x, 2*x)

[1] TRUE

4.5 Operations on Preorders and Other Binary Relations

Example. Let us consider the 5 following vectors.

ex1 <- list(
U = 10:0, # some upper bound
A = c(5,5,5,5), # moderate productivity & quality
B = c(4,3,2,1,1,0), # high productivity
C = c(8,7), # high quality
L = c(1,1) # some lower bound

)

Here is a plot of the corresponding “citation” curves:

for (i in seq_along(ex1))
plot_producer(ex1[[i]], add=(i>1), col=i, las=1)

legend("topright", legend=names(ex1), col=1:length(ex1), lty=1)

14

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

0 2 4 6 8 10 12

0

2

4

6

8

10 U
A
B
C
L

The adjacency matrix for the preordered set ({A,B,C, L, U},E) may be created with the
rel_graph() function. This routine takes each pair of elements from the list passed as its first
argument and compares them using a function passed as its second argument.

ord <- rel_graph(ex1, pord_weakdom) # compare each (ex1[[i]], ex1[[j]]) with pord_weakdom
print(ord)

U A B C L
U TRUE FALSE FALSE FALSE FALSE
A TRUE TRUE FALSE FALSE FALSE
B TRUE FALSE TRUE FALSE FALSE
C TRUE FALSE FALSE TRUE FALSE
L TRUE TRUE TRUE TRUE TRUE

rel_is_reflexive(ord) # is reflexive

[1] TRUE

rel_is_transitive(ord) # is transitive

[1] TRUE

rel_is_total(ord) # not a total preorder...

[1] FALSE

We see that we have A 6E6D B, A 6E6D C, B 6E6D C. In other words, no pair of elements in
{A,B,C} is comparable w.r.t. E:

..TO DO..

#incomp <- get_incomparable_pairs(ord)
#incomp <- incomp[incomp[,1]<incomp[,2],] # remove permutations: ((1,2), (2,1))->(1,2)
#incomp[,] <- rownames(ord)[incomp]
#print(incomp) # all incomparable pairs
the other way: generate maximal independent sets
#lapply(get_independent_sets(ord), function(set) rownames(ord)[set])

To draw the Hasse diagram, we base on the reflexive and a kind of transitive reduction of
the graph, which is determined by calling rel_reduction_hasse().

15

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

require(igraph)
hasse <- graph.adjacency(rel_reduction_hasse(ord))
set.seed(1234567)
plot(hasse, layout=layout.fruchterman.reingold(hasse, dim=2))

U

A

B

C

L

({A,B,C, L, U},E) is not totally ordered, let us determine the fair total closure of E (set
x E′′ y and y E′′ x whenever ¬(x E y or y E x), see [21] for discussion), and then calculate its
transitive closure, as the resulting matrix may not necessarily be transitive.

ord_total <- rel_closure_transitive(rel_closure_total_fair(ord)) # a total preorder
print(ord_total)

U A B C L
U TRUE FALSE FALSE FALSE FALSE
A TRUE TRUE TRUE TRUE FALSE
B TRUE TRUE TRUE TRUE FALSE
C TRUE TRUE TRUE TRUE FALSE
L TRUE TRUE TRUE TRUE TRUE

hasse <- graph.adjacency(rel_reduction_hasse(ord_total))
set.seed(123)
plot(hasse, layout=layout.fruchterman.reingold(hasse, dim=2))

16

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

U

A

B

C

L

Note that each total preorder E′′ induces an equivalence relation (x ' y iff x E′′ y and
y E′′ x; the equivalence classes may be ordered with E′′).

5 Predefined Classes of Aggregation Operators in agop

5.1 A Review of Notable Classes of Aggregation Operators

Here are some well-known classes of aggregation operators. Originally, they were defined for
fixed-length vector and for I = [0, 1].
Definition 17. Let w = (w1, . . . , wn) ∈ [0, 1]n be a weighting vector such that ∑n

i=1wi = 1.
Then, for any x ∈ In:

1. The weighted arithmetic mean associated with w, WAMw : In → I, is defined as

WAMw(x) =
n∑
i=1

wixi.

2. The ordered weighted averaging operator (cf. [51]) associated with w, OWAw : In →
I, is defined as

OWAw(x) =
n∑
i=1

wix(i).

We see that both functions are idempotent, additive, and that OWA is the symmetrized
version of WAM. Moreover, for w = (n ∗ 1

n), WAMw defines the arithmetic mean (mean() in R).
Truncated mean is an interesting example of an OWA operator (see mean(x, trim=...)).

In agop the WAM and OWA operators are available as wam() and owa().

wam(c(1,2,2,2), c(0.1,0.4,0.4,0.1))

[1] 1.9

owa(c(1,3,5,2), rep(1,4)) # should be normalized

Warning: elements of ‘w‘ does not sum up to 1. correcting.

[1] 2.75

17

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Note that there is a strong, well-known connection between the OWA operators and the
Choquet integral [10] w.r.t. some monotone measure, see e.g. [30].

Definition 18. Let w = (w1, . . . , wn) ∈ In be a vector such that ∨ni=1wi = b = sup I. Then,
for any x ∈ In:

1. The weighted maximum associated with w, WMaxw : In → I, is defined as

WMaxw(x) =
n∨
i=1

(wi ∧ xi).

2. The ordered weighted maximum (cf. [14, 13]) associated with w, OWMaxw : In → I,
is defined as

OWMaxw(x) =
n∨
i=1

(wi ∧ x(i)).

agop implementation: wmax() and owmax().

wmax(c(1,3,5,2), rep(Inf, 4)) # greatest value /default behavior/

[1] 5

owmax(1:10, 1:10)

[1] 10

Definition 19. Let w = c(w1, . . . , wn) ∈ [0, 1]n be such that ∧ni=1wi = a = inf I. Then, for
any x ∈ In:

1. The weighted minimum WMinw : In → I associated with the weight vector w is defined
as

WMinw(x) =
n∧
i=1

(wi ∨ xi).

2. The ordered weighted minimum OWMinw : In → I associated with the weight vector
w is defined as

OWMinw(x) =
n∧
i=1

(wi ∨ x(i)).

agop implementation: wmin() and owmin().
It is clear to see that OWMax operators fulfill the maxitivity property and OWMin operators

fulfill the minitivity property. Interestingly, it may be shown, cf. [30], that for each OWMax
operator there exist an equivalent OWMin operator and inversely.

As stated above, “classical” aggregation operators were defined for vectors of fixed lengths.
Let us present some notable generalizations of these operators.

Let II denote the set of functions from I to I. The following object will be needed for further
considerations.
Definition 20. A triangle of functions is a sequence 4 = (fi,n ∈ II : i ∈ [n], n ∈ N).

Here is a graphical interpretation of 4:
f1,1
f1,2 f2,2
f1,3 f2,3 f3,3
...

...
... . . .

18

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Definition 21. Let 4 = (fi,n)i∈[n],n∈N be a triangle of functions such that (∀n) ∑n
i=1 inf fi,n ≥ a

and (∀n) ∑n
i=1 sup fi,n ≤ b. Then the quasi-L-statistic generated by 4 is a function qL4 :

I1,2,... → I such that
qL4(x) =

n∑
i=1

fi,n(x{i}).

It is easily seen that quasi-L-statistics generalize OWA operators if we set fi,n(x) = cn−i+1,nx,
ci,n ∈ [0, 1], and (∀n) ∑n

i=1 ci,n = 1.
Assume that I = [0, b]. Interestingly, it has been shown ([36], cf. also [20]) that an aggre-

gation operator F : I1,2,... → I fulfills the symmetric modularity property if and only if F is a
nondecreasing quasi-L-statistic. What is more, in [20] we may find that qL4 is nondecreasing
if and only if there exists O = (gi,n)i∈[n],n∈N such that (∀n) (∀i ∈ [n]) gi,n is nondecreasing,
(∀n) ∑n

i=1 gi,n ≤ b, (∀n) (∀i > 1) gi,n(0) = 0 and qL4 = qLO.

Definition 22. The quasi-S-statistic for a given triangle of functions 4 = (fi,n)i∈[n],n∈N is a
function qS4 : I1,2,... → I such that

qS4(x) =
n∨
i=1

fi,n(x{i}),

for any x ∈ I1,2,....

Quasi-S-statistic generalize the OWMax operators, if fi,n(x) = x ∧ cn−i+1,n, ci,n ∈ I and
(∀n) ∨ni=1 ci,n = b.

There is an equivalence between symmetric maxitive aggregation operators and nondecreas-
ing quasi-S-statistics. Moreover, without loss of generality we may assume that a nondecreasing
quasi-S-statistic is always generated by triangle of functions in which (∀n) (∀i ∈ [n]) fi,n is
nondecreasing, (∀n) (∀i ∈ [n]) fi,n(a) = fn,n(a) and (∀n) f1,n � · · · � fn,n), see [20].

Definition 23. The quasi-I-statistic generated by 4 = (fi,n)i∈[n],n∈N is a function qI4 :
I1,2,... → I such that

qI4(x) =
n∧
i=1

fi,n(x{i}),

for any x ∈ I1,2,....

Quasi-I-statistics are generalizations of the OWMin operators, if fi,n(x) = x∨cn−i+1,n, ci,n ∈ I
and (∀n) ∧ni=1 ci,n = a.

Like above, it has been shown that every symmetric minitive aggregation operator is a
nondecreasing quasi-I-statistic, and conversely. Additionally, with no loss in generality we
may assume that nondecreasing quasi-S-statistic is generated by triangle of functions in which
(∀n) (∀i ∈ [n]) fi,n is nondecreasing, (∀n) (∀i ∈ [n]) fi,n(b) = fn,n(b) and (∀n) f1,n � · · · � fn,n,
see [20].

Note: sometimes we also consider L-, S-, and I-statistics, i.e. special cases of the above-
defined quasi-·-statistics, generated by triangles of coefficients (i.e. sequences 4 = (ci,n ∈ I :
i ∈ [n], n ∈ N), cf. [6]). An L-statistic is a quasi-L-statistic for which we have fi,n(x) = ci,nx.
Similarly, by setting fi,n(x) = x∧ ci,n we obtain an S-statistic from the quasi-S-statistics class,
and by setting fi,n(x) = x ∨ ci,n we get an I-statistic from quasi-I-statistics.

19

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Also note that L-statistics are known from the probability theory. However, sometimes under
this name some authors understand sums of a function of order statistics.

Most interestingly, in [20] it has been shown that the intersection of any two of the three
“quasi” classes is the same:

quasi-S

quasi-Iquasi-L

Basing on this result, the OM3 class (symmetric maxitive, minitive, and also modular
aggregation operators) was proposed in [7, 8].

Definition 24. A sequence of nondecreasing functions w = (w1,w2, . . .), wi : I → I, and a
triangle of coefficients 4 = (ci,n)i∈[n],n∈N, ci,n ∈ I such that (∀n) c1,n ≤ c2,n ≤ · · · ≤ cn,n,
0 ≤ wn(0) ≤ c1,n, and wn(b) = cn,n, generates a nondecreasing OM3 operator M4,w : In → I
such that for x ∈ In we have:

M4,w(x) =
n∨
i=1

wn(x(n−i+1)) ∧ ci,n =
n∧
i=1

(wn(x(n−i+1)) ∨ ci−1,n) ∧ cn,n

=
n∑
i=1

((
wn(x(n−i+1)) ∨ ci−1,n

)
∧ ci,n − ci−1,n

)
.

We see that the OM3 class contains i.a. all order statistics (whenever wn(x) = x, and ci,n = 0,
cj,n = b for i < k, j ≥ k, and some k), OWMax operators (for wn(x) = x), and the famous
Hirsch h-index (see below).

5.2 Interesting Impact Functions

Let us go back to the Producers Assessment Problem. Below we assume that I = [0,∞].

The h-index. Given a sequence x = (x1, . . . , xn) ∈ I1,2,..., the Hirsch index [31] of x is
defined as H(x) = max{i = 1, . . . , n : x{i} ≥ i} if n ≥ 1 and x{1} ≥ 1, or H(x) = 0 otherwise. It
may be shown that the h-index is a zero-insensitive OM3 aggeration operator, see [20], with:

H(x) =
n∨

i=1,...,n
i ∧ bx{i}c.

Interpretation: “an author has h-index of H if H of his/her n most cited papers have at least H
citations each, and the other n−H papers are cited no more that H times each”. The h-index
may also be expressed as a Sugeno integral [43] w.r.t. to a counting measure, cf. [45] and [29].
agop implementation: index_h().

index_h(c(6,5,4,2,1,0,0,0,0,0,0))

[1] 3

20

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Moreover, we have H(x) ≤ min{n, x1}.
Note that the h-index was defined in original context (aggregation of citation counts) for

integer vectors. More generally, it is better to use the OM3 operator with wi(x) = x = Id(x)
and ci,n = i (two identity “objects” = one of the simplest setting). Interestingly, such aggregation
operator is then asymptotically idempotent, i.e. for all x ∈ I we have limn→∞M4,w(n ∗ x) = x.

The g-index. Egghe’s g-index [15] is defined as G(x) = max{g = 1, . . . , n : ∑g
i=1 x{g} ≥ g2},

and is available in agop by calling index_g(). We have G(x) ≥ H(x) with G(n∗n) = H(n∗n) = n

Note that this aggregation operator is not zero-insensitive, for example G(9, 0) = 2 and
G(9, 0, 0) = 3. Thus, we also provide the index_g_zi() function, which treats x as it would be
padded with 0s.

index_g(9)

[1] 1

index_g(c(9,0,0))

[1] 3

index_g_zi(9)

[1] 3

The index is interesting from the computational point of view – it may be calculated on
the nondecreasing vector of cumulative sums, cumsum(sort(x, decreasing=TRUE)), however,
it cannot directly be expressed as a symmetric maxitive aggregation operator.

However, it might be shown (see [29] for the proof) that if x is sorted nondecreasingly, then:

G(x) = H(x)(0 ∨ cummin(cumsum(x)− (1 : n)2 + (1 : n))),

where 1 : n = (1, 2, 3, . . . , n).

The w-index. The w-index [49] is defined as

W(x) = max
{
w = 0, 1, 2, . . . : x{i} ≥ w − i+ 1, i = 1, . . . , w

}
and is available in agop by calling index_w().

Interestingly, we have shown in [29] that if x is sorted nondecreasingly, then:

W(x) = H(x)(cummin(x + (1 : n)− 1)).

Thus, it is easily seen that this is a zero-insensitive impact function. What is more we have
H(x) ≤W(x) ≤ 2H(x) and W(x) ≤ min{n, x1}.

The rp-indices. The rp-index, for p > 1 is expressed as

rp(x) = sup {r > 0 : sp,r E x},

where sp,r =
(

p
√
rp − 0p, p

√
rp − 1p, . . . , p

√
rp − brcp)

)
. For more details see [18, 25].

Please note that for integer vectors we have r1 = W and r∞ = H (cf. [25]). Hence it easily
seen that, this is a zero-insensitive impact function.

agop implementation: index_rp().

21

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

The lp-indices. The lp-index (cf. [18, 25]) for p ∈ [1,∞), u > 0 and v > 0 is a function
lp : I1,2,... → I2 given by the equation

lp(x) = arg sup
(u,v)
{uv : ep,u,v E x},

where ep,u,v =
(

p

√
vp − (vu0)p, p

√
vp − (vu1)p, . . . , p

√
vp − (vubuc)p

)
.

agop implementation: index_lp().

The MAXPROD-index. The MAXPROD-index [35] is given by the equation

MP(x) = max
{
i · x{i} : i = 1, 2, . . .

}
is another example of zero-insensitive impact function. Interestingly, this index is a particular
case of a projected l∞-index, see [25], and can be also expressed in terms of Shilkret integral
[42], see [29] for discussion.

In agop the MAXPROD-index is implemented in the index_maxprod() function.

Simple transformations of the h-index. Bibliometricians in many papers considered very
simple, direct modifications of the h-index. For example, the h(2)-index [34] is defined as:

H2(x) = max
{
h = 0, 1, 2, . . . : xh ≥ h2

}
.

Some authors introduced other settings than “h2” on the right side of (5.2), e.g. “2h”, “αh” for
some α > 0, or “hβ”, β ≥ 1, cf. [2].

It may easily be shown that these reduce to the h-index for properly transformed input
vectors, e.g. H2(x) = H(

√
x).

5.3 Noteworthy Fuzzy Logic Connectives

All the predefined fuzzy logic connectives have been vectorized in agop. In other words, any
e.g. binary operation B : [0, 1]2 → [0, 1] has been extended to act on vectors of arbitrary length.
Given x,y ∈ [0, 1]n we have B(x,y) = (B(x1, y1), . . . , B(xn, yn)). For instance:

x <- c(0, 0.5, 1)
y <- c(0.4, 0.6, 0.8)
tnorm_lukasiewicz(x, y)

[1] 0.0 0.1 0.8

Note that many new logical connectives may be generated via existing ones. For example,
given any fuzzy implication I, N(x) = I(x, 0) is a fuzzy negation. Moreover, given any t-conorm
S and any negationN , I(x, y) = S(N(x), y) is a fuzzy implication (a so-called (S-N)-implication),
see e.g. [3] for more details.

And here is how we may create exemplary contour plots of various t-norms:

x <- seq(0, 1, length.out=100)
y <- seq(0, 1, length.out=100)
par(mfrow=c(2,2))
funs <- list("Minimum t-norm"=tnorm_minimum, "Product t-norm"=tnorm_product,

"Lukasiewicz t-norm"=tnorm_lukasiewicz, "Drastic t-norm"=tnorm_drastic)
for (i in seq_along(funs)) {

z <- outer(x, y, funs[[i]])

22

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

image(x, y, z, col=heat.colors(20))
title(main=names(funs)[i])
contour(x, y, z, nlevels=25, add=TRUE)

}

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Minimum t-norm

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85

 0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Product t-norm

 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0.35 0.4

 0.45

 0.5 0.55

 0.6
 0.65

 0.7

 0.75 0.8

 0.85

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Lukasiewicz t-norm

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35
 0.4

 0.45

 0.5

 0.55
 0.6

 0.65

 0.7

 0.75

 0.8 0.85

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Drastic t-norm

 0.05 0.1 0.15 0.2 0.25 0.3 0.35

 0.4
 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

For 3D plots, check out e.g. the plot3D package.

t-norms Table 4 lists all the t-norms predefined by the agop package. For any t-norm T and
all x, y it holds TD(x, y) ≤ T (x, y) ≤ TM(x, y). Moreover, we have TŁ(x, y) ≤ TP(x, y).

Tab. 4. Exemplary t-norms

Name Function Definition
Minimum tnorm_minimum() TM(x, y) = x ∧ y
Product tnorm_product() TP(x, y) = xy

Łukasiewicz tnorm_lukasiewicz() TŁ(x, y) = (x+ y − 1) ∨ 0
Drastic tnorm_drastic()

TD(x, y) =
{

0 if x, y ∈ [0, 1)
x ∧ y if x = 1 or y = 1

Fodor tnorm_fodor()

TF(x, y) =
{

0 if x+ y ≤ 1
x ∧ y if x+ y > 1

23

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

t-conorms Table 5 lists all the t-conorms in the agop package. For any t-conorm S and all
x, y it holds SM(x, y) ≤ T (x, y) ≤ SD(x, y). Moreover, we have SP(x, y) ≤ SŁ(x, y). Also
note that S is a t-conorm if and only if there exists a t-norm t such that for all x, y it holds
S(x, y) = 1− T (1− x, 1− y), see [32].

Tab. 5. Exemplary t-conorms

Name Function Definition
Maximum tconorm_minimum() SM(x, y) = x ∨ y
Product tconorm_product() SP(x, y) = x+ y − xy
Łukasiewicz tconorm_lukasiewicz() SŁ(x, y) = (x+ y) ∧ 1
Drastic tconorm_drastic()

SD(x, y) =
{

1 if x, y ∈ (0, 1]
x ∨ y if x = 0 or y = 0

Fodor tconorm_fodor()

SF(x, y) =
{

1 if x+ y ≥ 1
x ∨ y if x+ y < 1

Fuzzy negations Table 6 lists available fuzzy negations. For any N and x it holds N0(x) ≤
N(x) ≤ N1(x).

Tab. 6. Exemplary fuzzy negations

Name Function Definition
Classic fnegation_classic() NC(x) = 1− x
minimal fnegation_minimal()

N0(x) =
{

1 if x = 0
0 if x > 0

maximal fnegation_maximal()

N1(x) =
{

1 if x < 1
0 if x = 1

Yager fnegation_yager() NY(x) =
√

1− x2

Fuzzy implications Table 7 lists fuzzy implications predefined in agop. For any I and x, y
it holds I0(x, y) ≤ I(x, y) ≤ I1(x, y).

5.4 A Note on Copulas

Copulas are used in probability and statistics to model dependency between random variables
(cf. the Sklar theorem). Many copulas are defined e.g. by the copula package – we decided not
to duplicate its features.

24

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Tab. 7. Exemplary fuzzy implications

Name Function Definition
minimal fimplication_minimal()

I0(x, y) =
{

1 if x = 0 or y = 1
0 otherwise

maximal fimplication_maximal()

I1(x, y) =
{

0 if x = 1 and y = 0
1 otherwise

Kleene-Dienes fimplication_kleene() IKD(x, y) = (1− x) ∨ y
Łukasiewicz fimplication_lukasiewicz() IŁ(x, y) = (1− x+ y) ∧ 1
Reichenbach fimplication_reichenbach() IRB(x, y) = 1− x+ xy

Fodor fimplication_fodor()

IF(x, y) =
{

1 if x ≤ y
(1− x) ∨ y if x > y

Goguen fimplication_goguen()

IGG(x, y) =
{

1 if x ≤ y
y/x if x > y

Gödel fimplication_goedel()

IGD(x, y) =
{

1 if x ≤ y
y if x > y

Rescher fimplication_rescher()

IRS(x, y) =
{

1 if x ≤ y
0 if x > y

Weber fimplication_weber()

IW(x, y) =
{

1 if x < 1
y if x = 1

Yager fimplication_yager()

IY(x, y) =
{

1 if x = 0 and y = 0
yx otherwise

library("copula")
cc <- frankCopula(1, dim=2)
pCopula(c(0.5, 0.8), cc) # 0.4197217
pCopula(c(0.9, 1.0), cc) # 0.9

Note that t-norms such as TM, TP, and TŁ are examples of 2-copulas. On the other hand,
TD and TF are not 2-copulas.

25

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

Interestingly, by the Frechet-Hoefding theorem, we have TŁ(x, y) ≤ C(x, y) ≤ TM(x, y) for
any x, y and 2-copula C, see e.g. [32].

5.5 Interesting Spread Measures

..... (see var()), standard deviation (see sd()), range, interquartile range (IQR, see IQR()),
median absolute deviation (MAD, see mad()) etc., that is functions widely used in exploratory
data analysis as descriptive statistics.

...TO DO...
D2OWA (d2owa()):

D2OWAw(x) =

√√√√ 1
n

n∑
i=1

(xi − OWAw(x))2

6 Aggregation Operators from the Probabilistic Perspective

By default, theory of aggregation looks at the aggregation operators mainly from the alge-
braic perspective. Of course, we may also be interested in their probabilistic properties, e.g. in
i.i.d. RVs models (the simplest and the most “natural” ones in statistics), cf. [18] for discussion.

Intuitively, a random variable is a method for “producing” input data. An aggregation oper-
ator applied on a random variable (possibly multidimensional) is classically called a statistic.

6.1 Some Notable Probability Distributions

Let (X1, . . . , Xn) i.i.d. F , where suppF = I. In social phenomena modeling, if F is continuous,
we often assume that the underlying density f is decreasing and convex on I, possibly with
heavy-tails. E.g. in the bibliometric impact assessment problem, this assumption reflects the
fact that higher paper valuations are more difficult to obtain than the lower ones, most of the
papers have very small valuation (near 0), and the probability of attaining a high note decreases
in at least linear pace.

Let us make a review of some useful statistical distributions, that are not available through
“base” R (for other ones, e.g. exponential, normal, uniform, Weibull, etc. refer to the widely-
available literature).

6.1.1 Pareto-Type II Distribution

Many generalizations of the Pareto distribution have been proposed (GPD, Generalized Pareto
Distributions, cf. e.g. [46, 52]). Here we will introduce the so-called Pareto-Type II (Lomax)
distribution, which has support I = [0,∞] and is defined with two parameters.

Formally, X follows the Pareto-II distribution with shape parameter k > 0 and scale param-
eter s > 0, denoted X ∼ P2(k, s), if its density is of the form

f(x) = ksk

(s+ x)k+1 (x ≥ 0). (2)

The cumulative distribution function of X is then:

F (x) = 1− sk

(s+ x)k (x ≥ 0). (3)

26

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

The Pareto-Type II distribution is implemented in agop: dpareto2() gives the p.d.f. (2),
ppareto2() gives the c.d.f. (3), qpareto2() calculates the quantile function, F−1, and rpare-
to2() generates random deviates.

Properties. The expected value of X ∼ P2(k, s) exists for k > 1 and is equal to EX = s
k−1 .

Variance exists for k > 2 and is equal to VarX = ks2

(k−2)(k−1)2 . More generally, the i-th raw
moment for k > i is given by: EXi = Γ(i+1)Γ(k−i)

Γ(k+1) ksi.

For a fixed s, if X ∼ P2(kx, s) and Y ∼ P2(ky, s), kx < ky, then X stochastically dominates
Y , denoted X � Y . On the other hand, for a fixed k, if X ∼ P2(k, sx) and Y ∼ P2(k, sy), then
sx > sy implies X � Y .

Most importantly, if X ∼ P2(k, s), then the conditional distribution of X − t given X > t,
is P2(k, s+ t) t ≥ 0.

Additionally, it might be shown that if X ∼ P2(k, s), then ln(s + X) has c.d.f. F (x) =
1 − ske−kx and density f(x) = kske−kx for x ≥ ln s, i.e. has the same distribution as Z + ln s,
where Z ∼ Exp(k) ≡ Γ(1, 1/k) (exponential distribution).

Parameter estimation. Let x = (x1, . . . , xn) be a realization of the Pareto-Type II i.i.d.
sample with known s > 0. The unbiased (corrected) maximum likelihood estimator for k:

k̂(x) = n− 1∑n
i=1 ln

(
1 + 1

sxi
) .

It may be shown that for n > 2 it holds Var k̂(x) = k2 1
n−2 .

agop implementation: pareto2_estimate_mle() with explicitly set argument s.

rowMeans(replicate(1000, {
pareto2_estimate_mle(rpareto2(50, 2, 1.5), s=1.5)

}))

k s
1.988461 1.500000

For both unknown k and s we have:
k̂ = n∑n

i=1 ln(1+xi/ŝ) ,
1 + 1

n

∑n
i=1 ln (1 + xi/ŝ)− n∑n

i=1(1+xi/ŝ)−1 = 0.

Unfortunately, the second equation must be solved numerically. It is worth noting that the above
system of equations may sometimes have no solution (as the local minimum of the likelihood
function may not exist, see [12] for discussion). This estimator may be heavily biased and have
a large mean squared error (of course, it is only asymptotically unbiased).

agop implementation: pareto2_estimate_mle() with explicitly set argument s.

rowMeans(replicate(1000, {
pareto2_estimate_mle(rpareto2(50, 2, 1.5))

}), na.rm=TRUE)

k s
2.876271 2.418572

27

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

We see that the estimator’s performance is weak.
A better (in general) estimation procedure was proposed in [53]. The Zhang-Stevens MMS

(minimum mean square error) (Bayesian) estimator has relatively small bias (often positive)
and mean squared error. In agop it is available as: pareto2_estimate_mmse.

suppressWarnings(rowMeans(replicate(1000, {
pareto2_estimate_mmse(rpareto2(50, 2, 1.5))

})))

k s
4.037108 3.291486

Goodness-of-fit tests. pareto2_test_ad() – Anderson-Darling goodness-of-fit test (ap-
proximate p-value)..... (TO DO: describe) for known s by means of the exp_test_ad() function
and the above-mentioned relationship between Pareto-Type II distributions and Exponential
ones.

x <- rpareto2(100, k=1, s=2)
pareto2_test_ad(x, s=2)

##
Anderson-Darling goodness-of-fit test for Pareto Type-II
distribution
##
data: x
W = 0.3169, p-value = 0.797

Two-sample F -test. The following simple test was introduced in [18]. Let (X1, X2, . . . , Xn1)
i.i.d. P2(k1, s) and (Y1, Y2, . . . , Yn2) i.i.d. P2(k2, s), where s is an a-priori known scale parameter.
We are going to verify the null hypothesis H0 : k1 = k2 against the two-sided alternative
hypothesis K : k1 6= k2.

It might be shown that ∑n
i=1 ln(s + Xi) − n ln s ∼ Γ(n, 1/k). This implies that under H0,

the following test statistic follows the Snedecor F distribution:

R(X,Y) = n1
n2

∑n2
i=1 ln

(
1 + Yi

s

)
∑n1
i=1 ln

(
1 + Xi

s

) H0∼ F[2n2,2n1]. (4)

The null hypothesis is accepted iff

R(x,y) ∈
[
qf(α2 , 2n2, 2n1), qf(1− α

2 , 2n2, 2n1)
]
,

where qf(q, d1, d2) denotes the q-quantile of F[d1,d2]

The p-value may be determined as follows:

p = 2
(

1
2 −

∣∣∣pf(R(x,y), 2n2, 2n1)− 1
2

∣∣∣) , (5)

where pf(x, d1, d2) is the c.d.f. of F[d1,d2].

agop implementation: pareto2_test_f().

x <- rpareto2(35, 1.2, 1)
y <- rpareto2(25, 2.1, 1)
pareto2_test_f(x, y, s=1)

28

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

##
Two-sample F-test for equality of shape parameters for Type
II-Pareto distributions with known common scale parameter
##
data: x and y
F = 0.3858, p-value = 0.000547
alternative hypothesis: two-sided

6.1.2 Discretized Pareto-Type II Distribution

We would say thatX ∼ DP2(k, s), i.e. it follows the discretized Pareto-Type II distribution
with shape parameter k > 0 and scale parameter s > 0, if X = bY c, where Y ∑P2(k, s).

......TO BE DONE......
The Discretized Pareto-Type II distribution is implemented in agop: ddpareto2() gives

the p.m.f., pdpareto2() gives the c.d.f., qdpareto2() calculates the quantile function, and
rdpareto2() generates random deviates.

6.2 Stochastic Properties of Aggregation Operators

Given (X1, X2, . . .) i.i.d. following a continuous c.d.f. F it is well-known, see [11], that L-statistics
with weights ci,n = w(i/n), for w : [0, 1]→ I, are asymptotically normally distributed. A similar
result for the same weight setting has been shown for S-statistics, see [27].

For i.i.d samples of finite length we have e.g. the following result [22]:
Theorem 25. Let X = (X1, . . . , Xn) be a sequence of i.i.d. random variables with continuous
c.d.f. F defined on R0+. Then the c.d.f. of H(X) for x ∈ [0, n) is given by

Dn(x) = I(F(bx+ 1c−0);n− bxc, bxc+ 1),

where I(p; a, b) is the regularized incomplete beta function (pbeta() in R).
More generally, the c.d.f. of some quasi-S-statistics may be expressed as an incomplete beta

function, see [27]. Note that, unlike in the case of the distribution of “ordinary” order statistics
(see [11]), the parameters a, b of I are functions of x here.

Acknowledgments. This document has been generated with LATEXand knitr package for R.
Their authors’ wonderful work is fully appreciated.

The contribution of Marek Gagolewski was partially supported by the European Union from
resources of the European Social Fund, Project PO KL “Information technologies: Research and
their interdisciplinary applications”, agreement UDA-POKL.04.01.01-00-051/10-00 (March-June
2013), and by the FNP START Scholarship from the Foundation for Polish Science (2013).

Bibliography

[1] Aho, A., Garey, M., and Ullman, J. The transitive reduction of a directed graph.
SIAM Journal on Computing 1, 2 (1972), 131–137.

[2] Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E., and Herrera, F. h-index:
A review focused on its variants, computation and standardization for different scientific
fields. Journal of Informetrics 3 (2009), 273–289.

29

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

[3] Baczyński, M., and Jayaram, B. Fuzzy implications. Springer-Verlag, Berlin, 2008.

[4] Beliakov, G., and James, S. Stability of weighted penalty-based aggregation functions.
Fuzzy Sets and Systems 226, 1 (2013), 1–18.

[5] Beliakov, G., Pradera, A., and Calvo, T. Aggregation functions: A guide for prac-
titioners. Springer-Verlag, 2007.

[6] Calvo, T., and Mayor, G. Remarks on two types of extended aggregation functions.
Tatra Mountains Mathematical Publications 16 (1999), 235–253.

[7] Cena, A., and Gagolewski, M. OM3: Ordered maxitive, minitive, and modular ag-
gregation operators – Part I: Axiomatic analysis under arity-dependence. In Aggregation
Functions in Theory and in Practise, H. Bustince et al., Eds., vol. 228. Springer, 2013,
pp. 93–103.

[8] Cena, A., and Gagolewski, M. OM3: Ordered maxitive, minitive, and modular aggre-
gation operators – Part II: A simulation study. In Aggregation Functions in Theory and in
Practise, H. Bustince et al., Eds., vol. 228. Springer, 2013, pp. 105–115.

[9] Cena, A., and Gagolewski, M. OM3: Ordered maxitive, minitive, and modular ag-
gregation operators – Axiomatic and probabilistic properties in an arity-monotonic setting.
Fuzzy Sets and Systems (2014). In press, doi:10.1016/j.fss.2014.04.001.

[10] Choquet, G. Theory of capacities. Annales de l’institut Fourier 5 (1954), 131–295.

[11] David, H. A., and Nagaraja, H. N. Order statistics. Wiley, 2003.

[12] del Castillo, J., and Daoudi, J. Estimation of the Generalized Pareto Distribution.
Statistics and Probability Letters 79 (2009), 684–688.

[13] Dubois, D., and Prade, H. Semantics of quotient operators in fuzzy relational databases.
Fuzzy Sets and Systems 78, 1 (1996), 89–93.

[14] Dubois, D., Prade, H., and Testemale, C. Weighted fuzzy pattern matching. Fuzzy
Sets and Systems 28 (1988), 313–331.

[15] Egghe, L. An improvement of the h-index: the g-index. ISSI Newsletter 2, 1 (2006), 8–9.

[16] Franceschini, F., and Maisano, D. A. The Hirsch index in manufacturing and quality
engineering. Quality and Reliability Engineering International 25 (2009), 987–995.

[17] Franceschini, F., and Maisano, D. A. Structured evaluation of the scientific output of
academic research groups by recent h-based indicators. Journal of Informetrics 5 (2011),
64–74.

[18] Gagolewski, M. Aggregation operators and their application in a formal model for quality
evaluation system of scientific research (Wybrane operatory agregacji i ich zastosowanie
w modelu formalnym systemu jakości w nauce). PhD thesis, Systems Research Institute,
Polish Academy of Sciences, 2011. (In Polish).

[19] Gagolewski, M. Bibliometric impact assessment with R and the CITAN package. Journal
of Informetrics 5, 4 (2011), 678–692.

30

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

[20] Gagolewski, M. On the relationship between symmetric maxitive, minitive, and modular
aggregation operators. Information Sciences 221 (2013), 170–180.

[21] Gagolewski, M. Scientific impact assessment cannot be fair. Journal of Informetrics 7,
4 (2013), 792–802.

[22] Gagolewski, M. Statistical hypothesis test for the difference between Hirsch indices of
two Pareto-distributed random samples. In Synergies of Soft Computing and Statistics for
Intelligent Data Analysis, R. Kruse et al., Eds., vol. 190. Springer, 2013, pp. 359–367.

[23] Gagolewski, M. Spread measures and their relation to aggregation functions. European
Journal of Operational Research 241, 2 (2015), 469–477.

[24] Gagolewski, M., and Cena, A. agop: Aggregation operators and preordered sets in R,
2014. http://agop.rexamine.com.

[25] Gagolewski, M., and Grzegorzewski, P. A geometric approach to the construction
of scientific impact indices. Scientometrics 81, 3 (2009), 617–634.

[26] Gagolewski, M., and Grzegorzewski, P. Arity-monotonic extended aggregation op-
erators. In Information Processing and Management of Uncertainty in Knowledge-Based
Systems, E. Hüllermeier et al., Eds., vol. 80. Springer, 2010, pp. 693–702.

[27] Gagolewski, M., and Grzegorzewski, P. S-statistics and their basic properties. In
Combining Soft Computing and Statistical Methods in Data Analysis, C. Borgelt et al., Eds.
Springer, 2010, pp. 281–288.

[28] Gagolewski, M., and Grzegorzewski, P. Possibilistic analysis of arity-monotonic
aggregation operators and its relation to bibliometric impact assessment of individuals.
International Journal of Approximate Reasoning 52, 9 (2011), 1312–1324.

[29] Gagolewski, M., and Mesiar, R. Monotone measures and universal integrals in a
uniform framework for the scientific impact assessment problem. Information Sciences 263
(2014), 166–174.

[30] Grabisch, M., Marichal, J.-L., Mesiar, R., and Pap, E. Aggregation functions.
Cambridge University Press, 2009.

[31] Hirsch, J. E. An index to quantify individual’s scientific research output. Proceedings of
the National Academy of Sciences 102, 46 (2005), 16569–16572.

[32] Klement, E. P., Mesiar, R., and Pap, E. Triangular norms. Kluwer Academic Pub-
lishers, 2000.

[33] Klir, G. J., and Yuan, B. Fuzzy sets and fuzzy logic. Theory and applications. Prentice
Hall PTR, New Jersey, 1995.

[34] Kosmulski, M. A new Hirsch-type index saves time and works equally well as the original
h-index. ISSI Newsletter 2, 3 (2006), 4–6.

[35] Kosmulski, M. MAXPROD — A new index for assessment of the scientific output of an
individual, and a comparison with the h-index. Cybermetrics 11, 1 (2007), .

31

https://github.com/Rexamine/agop

This tutorial reflects the state of the most recent development version of agop available on GitHub.
If you use the “official” CRAN release, some of the features may be unavailable.

[36] Mesiar, R., and Mesiarová-Zemánková, A. The ordered modular averages. IEEE
Transactions on Fuzzy Systems 19, 1 (2011), 42–50.

[37] Meyer, D., and Hornik, K. relations: Data Structures and Algorithms for Relations,
2013. R package version 0.6-2.

[38] Nelsen, R. An Introduction to Copulas. Springer-Verlag, 1999.

[39] Quesada, A. Monotonicity and the Hirsch index. Journal of Informetrics 3, 2 (2009),
158–160.

[40] Quesada, A. More axiomatics for the Hirsch index. Scientometrics 82 (2010), 413–418.

[41] Rousseau, R. Woeginger’s axiomatisation of the h-index and its relation to the g-index,
the h(2)-index and the r2-index. Journal of Informetrics 2, 4 (2008), 335–340.

[42] Shilkret, N. Maxitive measure and integration. Indagationes Mathematicæ33 (1971),
109–116.

[43] Sugeno, M. Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of
Technology, 1974.

[44] R Development Core Team. R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria, 2014. http://www.R-project.org.

[45] Torra, V., and Narukawa, Y. The h-index and the number of citations: Two fuzzy
integrals. IEEE Transactions on Fuzzy Systems 16, 3 (2008), 795–797.

[46] Villasenor-Alva, J., and Gonzalez-Estrada, E. A bootstrap goodness of fit test for
the Generalized Pareto Distribution. Computational Statistics and Data Analysis 53, 11
(2009), 3835–3841.

[47] Warshall, S. A theorem on boolean matrices. Journal of the ACM 9, 1 (1962), 11–12.

[48] Woeginger, G. J. An axiomatic analysis of Egghe’s g-index. Journal of Informetrics 2,
4 (2008), 364–368.

[49] Woeginger, G. J. An axiomatic characterization of the Hirsch-index. Mathematical
Social Sciences 56, 2 (2008), 224–232.

[50] Woeginger, G. J. A symmetry axiom for scientific impact indices. Journal of Informetrics
2 (2008), 298–303.

[51] Yager, R. R. On ordered weighted averaging aggregation operators in multicriteria deci-
sion making. IEEE Transactions on Systems, Man, and Cybernetics 18, 1 (1988), 183–190.

[52] Zhang, J. Improving on estimation for the Generalized Pareto Distribution. Technometrics
52, 3 (2010), 335–339.

[53] Zhang, J., and Stephens, M. A. A new and efficient estimation method for the Gener-
alized Pareto Distribution. Technometrics 51, 3 (2009), 316–325.

32

https://github.com/Rexamine/agop

Index
check_comonotonicity(), 14
d2owa(), 26
ddpareto2(), 29
dpareto2(), 27
exp_test_ad(), 28
fimplication_fodor(), 25
fimplication_goedel(), 25
fimplication_goguen(), 25
fimplication_kleene(), 25
fimplication_lukasiewicz(), 25
fimplication_maximal(), 25
fimplication_minimal(), 25
fimplication_reichenbach(), 25
fimplication_rescher(), 25
fimplication_weber(), 25
fimplication_yager(), 25
fnegation_classic(), 24
fnegation_maximal(), 24
fnegation_minimal(), 24
fnegation_yager(), 24
get_incomparable_pairs(), 15
get_independent_sets(), 15
index_g(), 21
index_g_zi(), 21
index_h(), 20
index_lp(), 22
index_maxprod(), 22
index_rp(), 21
index_w(), 21
owa(), 17
owmax(), 18
owmin(), 18
pareto2_estimate_mle(), 27
pareto2_estimate_mmse(), 28
pareto2_test_ad(), 28
pareto2_test_f(), 28
pdpareto2(), 29
plot_producer(), 10, 11
pord_nd(), 13
pord_spread(), 14
pord_weakdom(), 13
ppareto2(), 27
qdpareto2(), 29
qpareto2(), 27
rdpareto2(), 29

rel_closure_reflexive(), 12
rel_closure_symmetric(), 12
rel_closure_total_fair(), 12, 16
rel_closure_transitive(), 12, 16
rel_graph(), 15
rel_is_antisymmetric(), 12
rel_is_asymmetric(), 12
rel_is_cyclic(), 12
rel_is_irreflexive(), 12
rel_is_reflexive(), 12, 15
rel_is_symmetric(), 12
rel_is_total(), 12, 15
rel_is_transitive(), 12, 15
rel_reduction_hasse(), 12, 15
rel_reduction_reflexive(), 12
rel_reduction_transitive(), 12, 16
rpareto2(), 27
tconorm_drastic(), 24
tconorm_fodor(), 24
tconorm_lukasiewicz(), 24
tconorm_minimum(), 24
tconorm_product(), 24
tnorm_drastic(), 23
tnorm_fodor(), 23
tnorm_lukasiewicz(), 23
tnorm_minimum(), 23
tnorm_product(), 23
wam(), 17
wmax(), 18
wmin(), 18

33

	Getting Started
	Theoretical Background
	A Note on Representing Numeric Data and Applying Operations in R
	A Note on Storing Multiple Numeric Vectors in R
	Aggregation Operators and Their Basic Properties
	Impact Functions and The Producers Assessment Problem
	Fuzzy Logic Connectives
	Copulas
	Spread Measures

	Visualization
	Depicting Producers

	Binary Relations
	Weak Dominance Relation (for PAP)
	Weak Dominance Relation (for vectors of fixed arity)
	Comonotonicity
	Vector Spread
	Operations on Preorders and Other Binary Relations

	Predefined Classes of Aggregation Operators in agop
	A Review of Notable Classes of Aggregation Operators
	Interesting Impact Functions
	Noteworthy Fuzzy Logic Connectives
	A Note on Copulas
	Interesting Spread Measures

	Aggregation Operators from the Probabilistic Perspective
	Some Notable Probability Distributions
	Pareto-Type II Distribution
	Discretized Pareto-Type II Distribution

	Stochastic Properties of Aggregation Operators

	Bibliography
	Index

