=
9
4]
)
=
©)
AL
0
=
©
=
=
— |
=

o
Q
=]
o
o0
o
Sem
)
-9
=
)
=)
0
=)

S
0
<L)
j—
=t
<
=
=
Q
N

Project at a Glance - Sphinx 4

Description
e Speech recognition written entirely in the Java™
programming language
e Based upon Sphinx developed at CMU:
www.speech.cs.cmu.edu/sphinx

Goals

e Highly flexible recognizer
e Performance equal to or exceeding Sphinx 3

e Collaborate with researchers at CMU and MERL,
Sun Microsystems and others

Project at a Glance - Sphinx 4

Distinctives:

e Highly configurable front-end processing

e Support isolated word, n-gram and context free
grammars

e Support for arbitrary unit context sizes to allow for
improved recognition

e Pluggable architecture allows new search and
pruning algorithms to be used

Recognition Issues

e Quality of recognition

P * o Is directly related to
| blah blah) > P! brown cou quality of voice data
Speech Text ® As partof the Sphinx 4
N \ ‘ project we will be
Language Models developing a trainer to
o ’““’””*‘"h‘:““’de“ give us good voice

— VDICE Dﬂti \ data

Good Voice Data is the key
to good recognition!

How does a Recognizer Work?

Goal:
o N e Audio goes In

> "[B”’W” COW} e Results come out

Speech / C L
Audio Results Three application types

A e |[solated words
A N ’/ e Command /
Yoice Data Control

< e General Dictation

Zpo\

Sphinx 4 Architecture

f(D
9
> s |7 &
@ Q s 3 ® 04/
</ 3 - > |2 §
N) C.)O % | (G)) C-— O/(Q
y S E 7
&

'Con’trol BQSG

. Feature M K \Nl d
~fudig, ﬁ:ront Enc] _${ Decoder } Feedch‘[e 96}

udio

Front-End (Cr
A

e Transforms speech

: AudioSource
waveform into features .
used by recognition Premphasizer

Windower

e Features are sets of mel-
frequency cepstrum
coefficients (MFCC) Mel Eilter Bank

e MFCC model human Mel Cepstrum Filter
auditory system (Cepstr‘al Mean Normalizer*)

e Front-End is a set of signal (Feature Extractor |
processing filters

e Pluggable architecture \,CQQ Features)

Spectrum Analyzer

CONL D\ D O
N

Knowledge Base

e The data that drives the
decoder

e Consists of three sets of
data:

e Dictionary
e Acoustic Model
e Language Model

e Needs to scale between
the three application
types

[PPOW 213Snody

9
2
o
3
a
<
)

|9po\ 9bpnbup

C\

Dictionary

e Maps words to pronunciations

e Provides word classification
iInformation (such as part-of-
speech)

e Single word may have multiple
pronunciations

@ i Aapuoldlq ' .

e Pronunciations represented as
phones or other units

e Can vary in size from a dozen
words to >100,000 words

Language Model

e Describes what is likely to be
spoken in a particular context

e Uses stochastic approach.
Word transitions are defined in
terms of transition
probabilities

e Helps to constrain the search
space

@ i [9poW 2bpnbupT

10

11

Command Grammars

e Probabilistic context-free grammar
e Relatively small number of states

e Appropriate for command and control applications

open door

mmm
e et e

close hood

open|close [the] door|hood

12

N-gram Language Models

e Probability of word N dependent on word N-1, N-2, ...

® Bigrams and trigrams most commonly used

e Used for large vocabulary applications such as dictation

e Typically trained by very large (millions of words) corpus

[Unigram /Q P(back) }

[Bigmm

QP/(back] look)

Nbackl strikes)]

[Trigram

Q{(back |don't, look)

&backlgun, strikes) \Q P(back|empire, strikesa

Language Model Issues

e Pruning 9
e Smoothing -
e Adaptation

e Training (50 to 100
million words)

e Finite State Transducers

13

Acoustic Models

e Database of statistical models

e Each statistical model represents a
single unit of speech such as a
word or phoneme

e Acoustic Models are
created/trained by analyzing large
corpora of labeled speech

e Acoustic Models can be speaker
dependent or speaker independent

14

Hidden Markov Model

e Hidden Markov Models represent each
unit of speech in the Acoustic Model

e HMMs are used by a scorer to calculate
the acoustic probability for a particular
unit of speech

e A Typical HMM uses 3 states to model a
single context dependent phoneme

e Each state of an HMM is represented by
a set of Gaussian mixture density
functions

>
0
(o]
G
(=
9]
(o}
Q.
®
g~ J

15

Gaussian Mixtures

e (Gaussian mixture density functions represent each
state in an HMM

e HMMs can share senones

e Each set of Gaussian mixtures is called a senone
aoo Q Q d22 Q
@ dlz
A

@ dol >G)
AN o/t A

Gaussian Mixtures

I
>

16

The Decoder

17

. Feature;
fudig_ E:ront En% Control

A A
()
| B R %,
2 5 ()] o
c 5 - (04
S i — ©
g o
VINE N L g
Decoder

R

powledge Knowledge
eedbac Base

Decoder - heart of the
recognizer

e Selects next set of likely states

e Scores Incoming features against these
states

e Prunes low scoring states

e Generates results

18

Decoder Overview

Application
A
X0 Y £
& g 85 %y,

2 & PE Fo % Applicati
% &sc' S5E &% Fe pplication
’ K o) 8 ‘

> Recognizer

Knowledge Base

Search Manager Lexicon

Front Larisne
End ingui e
Acoustic

Unit Info Model

Acoustic Scorer

19

Selecting next set of states

e Uses Grammar to select next set of possible
words

e Uses dictionary to collect pronunciations for
words

e Uses Acoustic Model to collect HMMs for
each pronunciation

e Uses transition probabilities in HMMs to
select next set of states

20

Sentence HMMS

/ &0 0
Jow/ } Inl + lax/ + Vn//'

door

21

22

Sentence HMMS

»C}@

/ax/
ﬁ»@ oy

o

g,

/p/

/ow/
A

ﬁ>©

—»

23

Search Lattice

/‘
%

O
O
O
O
O
O

O
O
O
O
O
O

24

Search Results

e Search results are just pointers back
Into the search lattice for high scoring
branches

e Enough information is kept with every
node In the lattice so unit,
pronunciation, word, grammar and
audio information can be
reconstructed

Search Issues

e Dealing with huge fan-out of search
space

e Pruning strategies
e Reducing scoring calculations

e Shared states
e Sub-vector quantization

25

26

Java™ Platform Issues

e GC makes managing data much easier

e Native engines typically optimize inner
loops for the CPU - can't do that on
the Java platform

e Native engines arrange data to
optimize cache hits — can't really do
that either

Sphinx 4 Summary

e Speech recognition is a challenging
problem for the Java platform

e Open source at SourceForge.net

e Accuracy currently matching S3 for
most cases

27

>
S
1
P
=
——
el
L)

