
Sphinx 4 for the JavaTM platform
Architecture Notes

Overview
This is a living document that describes the architecture of Sphinx 4 for the JavaTM

platform. The architecture was derived as a result of the face−to−face meetings of the
sphinx4 team at Sun Microsystems Laboratories on February 21st and 22nd, and April 18th

and 19th, 2002. The members of the sphinx4 team present at the meetings are as follows:

Evandro Gouvea, Carnegie Mellon University
Philip Kwok, Sun Microsystems Laboratories
Paul Lamere, Sun Microsystems Laboratories
Bhiksha Raj, Mitsubishi Electronic Research Laboratories
Rita Singh, Carnegie Mellon University
Willie Walker, Sun Microsystems Laboratories (Manager/PI)
Peter Wolf Mitsubishi Electronic Research Laboratories

Since this is a living document, we will update it as work on sphinx4 progresses
[[[WDW: Mental note: rewrite this whole thing... :−)]]].

High Level Architecture
The high level architecture for sphinx4 is relatively straightforward. As shown in the
following figure, the architecture consists of the front end, the decoder, a knowledge
base, and the application.

The front end is responsible for gathering, annotating, and processing the input data. In
addition, the front end extracts features from the input data to be read by the decoder.
The annotations provided by the front end include the beginning and ending of a data
segment. Operations performed by the front end include preemphasis, noise cancellation,
automatic gain control, end pointing, Fourier analysis, Mel spectrum filtering, cepstral
extraction, etc.

Knowledge

S
ea

rc
h

C
on

tr
ol

S
earch S

pace

Input C
ontro

l
Input E

ven
ts

Front End

KnowledgeInput
Control

Features
Knowledge

Base
Decoder

Feedback

Application

Recognizer

Application

The knowledge base provides the information the decoder needs to do its job. This
information includes the acoustic model and the language model. The knowledge base
can also receive feedback from the decoder, permitting the knowledge base to
dynamically modify itself based upon successive search results. The modifications can
include switching acoustic and/or language models as well as updating parameters such
as mean and variance transformations for the acoustic models.

The decoder performs the bulk of the work. It reads features from the front end, couples
this with data from the knowledge base and feedback from the application, and performs
a search to determine the most likely sequences of words that could be represented by a
series of features. The term "search space" is used to describe the most likely sequences
of words, and is dynamically updated by the decoder during the decoding process.

Unlike many speech architectures, the sphinx4 architecture allows the application to
control various features of the speech engine, permitting more sophisticated speech
application development. As depicted in the previous figure, the application can receive
events from the front end and can also provide some level of control over the front end.
The type of control can be as simple as turning the audio input on or off, but may also
include more sophisticated operations.

During the decoding process, the application may also receive events from the decoder
while the decoder is working on a search. These events allow the application to monitor
the decoding progress, but also allow the application to affect the decoding process
before the decoding completes. Furthermore, the application can also update the
knowledge base at any time.

The following sections describe each piece of the high level architecture in more detail.

Front End
The front end can be broken in several simple pieces as depicted in the following
illustration [[[WDW − needs to be updated to reflect the current implementation]]]:

Examining the illustration left to right, top to bottom, the front end first reads in raw data
via the Data Framer. This data can arrive by a stream, a file, or any other means. In
addition, while the data is typically audio, there can be a number of simultaneous data
sources, such as both video and audio. The Data Framer packetizes the data into
annotated Data Frames. These Data Frames contain information about the data packets,
including information such as if the data is the beginning or end of a segment.

Data
Framer

Data
Processor

Data
Processor

Data
Frame

Data
FrameRaw

Data

Feature
Extractor

Feature

Data
Frame

Feature
Processor

FeatureData
Frame

To Decoder...

The front end passes the Data Frames to a series of Data Processors. The Data
Processors perform successive modifications to the Data Frames, such as automatic gain
control, noise cancellation, down/up sampling, and preemphasis.

Once the preprocessing of a Data Frame is complete, the front end passes the Data Frame
to a Feature Extractor. The Feature Extractor extracts the feature(s) necessary for the
decoder to do its work. For audio, this typically involves obtaining cepstral and delta
cepstral information, but can be anything the decoder accepts. Furthermore, the resulting
Feature is not necessarily restricted to one data type. For example, the Feature may
contain information for both audio and video.

The front end then passes Feature frames to to a series of Feature Processors. The
Feature Processors may perform a number of operations including end pointing, noise
cancellation, and cepstral mean calculation.

When the front end has completed processing a Feature, it passes it to the decoder, which
is described later on this document.

Knowledge Base
The knowledge base provides the information the decoder needs to do its job. Typically,
the knowledge base consists of the acoustic model, the language model, and the lexicon.

The acoustic model provides the knowledge for converting frame sequences into unit
hypotheses, the lexicon provides the pronunciation (unit sequence) and part−of−speech
classification for words, and the language model provides the knowledge for converting
unit sequences into word and word sequence hypotheses.

Acoustic Model
In sphinx4, the acoustic model consists of a set of left−to−right Hidden Markov Models
(HMMs), with one HMM per unit. The units typically represent phones in a triphone
context. The following diagram illustrates the definition of the HMMs of the acoustic
models in sphinx4:

Acoustic
Model

Language
Model

Lexicon

Unit/Acoustic Info

Pron./Class Info

Words/Structure

In the drawing, any object shown as a "stack of cards" represents a shared pool of object
instances. For example, there is a shared pool of Senones that are referred to by
SenoneSequences. The set of shared pools allows the sphinx4 HMMs to support
concepts known as "state tying" and "parameter tying." With state and parameter tying,
the HMMs can share a large variety of features. There are at least two reasons for doing
tying: the primary reason is to get sufficiently trained models, and the second reason is
to help reduce the number of calculations during the search.

Each state of the HMMs in sphinx4 are called "Senones." The Senones are based on
probability density functions (pdfs). As shown in the illustration, the pdfs are continuous
Gaussian Mixtures. The exact type of pdf, however, does not have to be a Gaussian
Mixture. Instead, the pdf merely needs to be able to take a Feature from the front end
and return a score. As illustrated by the MixtureComponent, each GaussianMixture

MeanMeanVarianceTransformationMatrix

MeanMeanVariance

MeanMeanMeanTransformationVector

MeanMeanMeanTransformationMatrix

MeanMeanMean

MixtureComponent

Mean[x]
MeanTransformationMatrix[x][x]
MeanTransformationVector[x]
Variance[x]
VarianceTransformationMatrix[x][x]

Senone

MixtureWeights[m]
MixtureComponents[m]

SenoneSequence

Senone[]

UnitContext

Left[]
Right[]

UnitDescription

Name
UnitContext

HMM

CompositeSenoneSequence

SenoneSequence[]

UnitDescription
TransitionMatrix[n][n]
SenoneSequence

obtains its parameters from several shared pools (e.g., the GaussianMixture parameters
are tied).

Several HMMs can share the same senone sequence. As a result, the HMMs point to a
SenoneSequence that comes from a shared pool of SenoneSequences. In some HMMs
[[[WDW − give example]]], the SenoneSequence of an HMM is a special
CompositeSenoneSequence as illustrated.

Lexicon
The lexicon serves two purposes: first, it provides unit sequences for words; second, it
provides optional classification of words (e.g., noun, verb, etc.). The meaning of a unit
varies depending upon the recognition task. For example, for isolated word recognition,
the unit could be a whole word. For large vocabulary continuous recognition, the unit
could be a triphone.

Language Model
We’re still creating the language model portion of sphinx4, but at a minimum, sphinx4
will support three type of language models. The simplest type of language model is no
language model at all, and is used in the case of isolated word recognition. The next
common language model type is a context free grammar that can used in speech
applications based on command and control. The final language model type is based on
n−gram grammars, and is typically used for free form speech.

Since we’re still working on the format of the language model, this section is expected to
change over time.

Decoder
We are still working on the architecture for the decoder. The current decoder in
Sphinx 3 combines a LexTree with an n−Gram language model. We feel this is too
specific to include in sphinx4, and are working on a flexible model that permits the
Sphinx 3 model as well as other types of searches. At a minimum the other types of
searches we are looking at include support for isolated word recognition, context free
grammars, and n−gram language models.

The basic idea behind this model is to allow for more flexibility when it comes to the
search strategy. [[[WDW: For now, refer to search.txt.]]]

Unit Info

Transitions,
State info

Acoustic Scorer
(units and acoustics)

Search Manager

Linguist
(words and structure)

States

Scores
Successors,
Probabilities

Nodes

Decoder

Acoustic
Model

Language
Model

Lexicon

Knowledge
Base

Front
End

Feature
Frames

Pronunc.

[Class]

Language

Application

Se
ar

ch
 C

on
tro

l

Search Space
(R

esults)

Knowledge

Inp
ut

Con
tro

l
Inp

ut
Even

ts

Application

Recognizer

